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In the current paper, the stability loss examination for a viscoelastic body reinforced 
single-walled carbon nanotube (SWCNT) having local curvature was achieved. The 
study is conducted by applying the piecewise-homogeneous body model and 3D 
linearized stability theory (TDLTS). It is assumed that the carbon nanotube (CNT) in this 
instance exhibits an initially localized imperfection that is insignificant and the growth 
of this imperfection in the course of time is investigated. The criterion for determining 
stability loss is defined as the infinite growth of the local curvature of the CNT. The 
critical time value and critical load value are determined according to this criterion. 
The fractional-exponential Rabotnov operator is used to characterize the properties of 
the composite material's viscoelasticity. Numerical results reveal the influence of key 
parameters, such as the thickness of the CNT and rheological properties, on the critical 
load and time values. Increasing the thickness of the CNT leads to a decrease in critical 
load, while rheological parameters significantly affect stability outcomes. These 
findings are critical for designing advanced engineering materials with enhanced 
stability and performance. This study provides a theoretical framework for 
understanding the mechanical behaviour of CNT-reinforced viscoelastic composites, 
offering insights into their practical applications. The results can guide the design of 
materials for specific uses in vibration control, energy storage etc. and contributing 
optimal performance under varying conditions. Furthermore, this research highlights 
the importance of viscoelasticity in defining the mechanical properties and stability 
constraints of composite materials with locally curved SWCNTs. 
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1. Introduction 
 

The carbon nanotubes (CNTs) have been stimulated an abundance of possible uses owing to their 
high modulus of elasticity, high strength and their considerable properties as mechanical, optical and 
electronical after its discovery as mentioned by Baran et al., [1]. These unique properties provide 
superiority in a wide range engineering applications such as biotechnology chemistry and defence 
industry. CNTs are named according to the layers they have. Single-layer tubes are called single-
walled and those with more than one layer are called multi-walled CNTs by Malikan et al., [2]. 
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Moreover, CNTs are one of the strongest materials known [3]. Due to the high cost and difficulty of 
conducting performance and control studies at the nanoscale, scientists and engineers focus on 
creating theoretical models as mentioned by Karličić et al., [4]. 

According to Shi et al., [5] there are various methods used for theoretical studies of the 
mechanical properties of CNTs, such as the molecular dynamics method, the molecular mechanics 
model, the finite element model and the classical continuum model. Despite the fact that molecular 
dynamics simulation is more practical than other approaches for analysis of nanomaterials because 
of their discrete structures, it is difficult to perform experiments at nano scale. For large-sized atomic 
systems, atomistic modelling is also computationally expensive. Thus, continuum modelling is crucial 
in the investigation of nanostructures' mechanical characteristics as described by Arefi et al., [6]. The 
applicability of continuum mechanics in the investigation of nanostructures was discussed by Guz [7] 
and Duan et al., [8]. The fracture of pre-cracked graphene layers (CNTs consist of graphene layers) 
with Peridynamics (PD) was modelled and is investigated with molecular simulation method by Liu et 
al., [9]. 

According to many experimental observations, CNTs (most nanostructures) are mostly identified 
by a specific degree of fluctuation in their axial direction. The presence of a geometric imperfection 
exerts a substantial impact on the mechanical behaviour of carbon nanotubes. CNTs with initial 
defects have different mechanical behaviours than flat ones as told by Arefi et al., [6]. The tubule 
curves as a result of the defects and CNTs have various tubule shapes including straight, wavy, helical 
and branched that have been observed and synthesized so far [10]. The nanotubes having curvature 
are widely utilized in a variety of engineering applications [2]. Looking at a brief review of studies on 
the analysis of the stability of elastic (or viscoelastic) body containing SWCNTs such as Arefi et al., [6], 
it is investigated the stability of a CNT having light curvature under lateral loading in the context of 
Eringen's theory of nonlocal elasticity.  

It is examined by Mehdipour et al., [11] that the nonlinear force vibrational analysis of a placed 
curved SWCNT put in an elastic medium utilizing continuum mechanics and an elastic beam model. 
The paper by Berrabah et al., [12], investigated the wave propagation in single-walled CNTs using 
nonlocal elasticity theory. Wang et al., [13], the study focuses on analysing the phenomenon of elastic 
buckling in micro and nano-rods/tubes. This research is conducted using Eringen's nonlocal theory of 
elasticity and Timoshenko beam theory. It is analysed that the mechanical buckling behaviour of a 
single-walled carbon nanotube (SWCNT) integrated in an elastic medium [14]. Similar studies are also 
available for multi-walled carbon nanotubes (MWCNT) and generally MWCNTs are modelled as shell 
or column. For example, Ru [15], it was studied buckling of DWCNT subjected to axial load in elastic 
medium. In the paper by Yan et al., [16], the behaviour of triple-walled CNTs (TWCNTs) was 
investigated with initial axial stress. Moreover, it is assumed that TWCNTs were consist of three 
elastic shells and van der Waals forces connected the shells. Thermal conductivity and stability of 
SWCNTs and MWCNTs are investigated by Jamil et al., [17]. It is made that the viscoelastic evaluation 
of phenolic resin reinforced with CNTs [18]. The results obtained there show that CNT added to a 
phenolic resin matrix can significantly increase viscoelastic properties and change thermal stability.  

Moreover, in study by Çoban Kayıkçı et al., [19], stability analyses of CNTs placed in an elastic 
medium and with an initial primitive defect are performed separately for both two-layer and three-
layer CNTs. Additionally, the stress analysis of two-layer CNT having curvature with an initial primitive 
defect was investigated by Çoban Kayıkçı et al., [20]. Viscoelastic materials are speedily attained 
interest in damping applications and it is shown by Suhr et al., [21] that with an increase of up to 
1,400%, the material containing MWCNTs exhibits substantial viscoelastic behaviour.  

In the paper by Malikan et al., [2], the dynamic response of non-cylindrical curved viscoelastic 
monolayer CNTs is theoretically investigated. Here, the viscoelastic damping effect is evaluated 
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utilizing the Kelvin-Voigt viscoelastic model. The complicated mechanics of the viscoelastic CNT 
subjected to electrical load are investigated [22], utilizing the nonlocal continuum theory, the Kelvin-
Voigt viscoelastic model and the Euler beam theory.  

The microbuckling phenomenon of double-walled carbon nanotubes (DWCNT) placed within the 
polymer matrix was investigated [23]. The Three-Dimensional Linearized Theory of Stability of 
Deformable Bodies (TDLTSDB), which covers the model of a body that is homogeneous in different 
regions, was used to conduct the investigation. We review to a summary of TDLTSDB used in the 
present paper. This method is used in the stability problems for elastic or viscoelastic material. After 
1950s, considerable contributions were provided to the development of TDLTS and it was used to 
solve a variety of stability loss issues with structural parts. In most cases, the TDLTS, which are the 
linearization method is employed to analyse instability issues of construction components by utilizing 
the equations and relations obtained from the exact nonlinear equations of deformable solid body 
mechanics as explained by Akbarov et al., [24]. A comprehensive overview of the relevant 
investigation was carried out by Babich et al., [25].  

 TDLTS was mostly applied in relation to the stability loss of components composed of time-
independent materials. A method for stability analysis of structural members produced from time-
dependent materials is proposed by Hoff et al., [26]. That method was based on the increase of the 
initial defect in the structural elements with the flow of time under constant external static 
compression. Nevertheless, the aforesaid approach is not given in TDLTS. For the first time, in order 
to study of the stability loss in the longitudinal fibrous structure, Akbarov et al., [27] proposed an 
approach. The gradual growth of the initially existing defects in the fibres is taken as the criterion for 
determining the critical load or critical time values, which are the parameters of the loss of stability 
[28]. In addition, the aforesaid approach was employed to investigate analyse the fibre buckling in a 
viscoelastic matrix [29], the symmetrical stability of a cylindrical material formed of viscoelastic 
composite was examined applying the 3D method. It was studied the theoretical limit of composites 
having hollow and locally curved fibres by Akbarov et al., [30]. 

After all of these summarizations, it is seen that no study in the literature analyses stability loss 
of viscoelastic material containing the locally curved SWCNT employing the TDLTS. The current study 
is the initial effort to explore the stability analyses of SWCNT with local curvature in the viscoelastic 
material. Understanding the stability loss of single-walled carbon nanotubes (SWCNTs) embedded in 
viscoelastic matrices is a critical issue for the development of advanced composite materials. Despite 
significant progress in modelling CNTs, the impact of local curvature and viscoelasticity on stability 
has not been comprehensively explored. Existing studies often neglect the combined effects of 
localized imperfections and viscoelastic damping, leaving a gap in the theoretical understanding of 
these materials. By providing theoretical insights and numerical results, this research seeks to guide 
the design of CNT-reinforced composites with enhanced stability and performance. TDLTS is used 
within the context of the piecewise homogeneous body model in this paper and the SWCNT is 
modelled as a hollow cylinder. 

 
2. Mathematical Formulation 

 
In this problem, an infinite viscoelastic medium containing an infinitely long, low density and 

locally curved single-walled carbon nanotube (SWCNT) is considered. It is assumed that this body, 
which is shown in Figure 1, is affected by normal forces that uniformly distributed in the SWCNT 
direction at infinity. It will also be assumed that radii of the parts at right angles to the CNT surface 
do not change along the CNT. 
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Fig. 1. The cross-sectional geometry of an infinitely 
viscoelastic body 

 
As it can be seen in Figure 1, the 𝑂𝑥!𝑥"𝑥# Cartesian and 𝑂𝑟𝜃𝑧 cylindrical coordinates systems 

with the starting point on the center line of the CNT are selected and these coordinates are assumed 
to be Lagrange coordinates. It will be considered that the viscoelastic body is under the influence of 
equally dispersed normal forces directed toward the CNT at a density of p (𝑂𝑥#) at infinity. It will also 
be assumed that the sections of the CNT perpendicular to the center line are circles with radii R1 and 
R2 and these radii do not change along the CNT. By assuming that the CNT and viscoelastic matrix are 
made up of different materials, the investigations will be made by applying the geometrical nonlinear 
three-dimensional exact equations of continuum mechanics. It is addressed the equation of centre 
line of CNT as: 
 
𝑥!=F(𝑥#)=εδ(𝑥#), 𝑥" = 0                                                               (1) 

 
The metric (0 ≤ 𝜀 < 1) is used to quantify the magnitude of the bending amplitude of CNT. 

Additionally,  function displays the bending configuration of the CNT previous to loading. 
Indicated in Eq. (1), The central axis of the single-walled carbon nanotube (SWCNT), which has a 
primitive defect is situated inside the  plane. Upon initialization, it is accepted that the central 
axis of the carbon nanotube (CNT) stays situated inside this plane. By using the equation denoted as 
Eq. (1) and considering the CNT-cross section condition, it can be derived the equation for S2, which 
represents the interface between the carbon nanotube (CNT) and the viscoelastic matrix, as 
described by Akbarov et al., [31]. The equation is expressed as follows: 
 

𝑟(𝜃, 𝑡#) =
$%('!))!*$"(%#('!))"+ ,-. /

!*(%#('!))"$" ,-." /
+ 1$

"(%('!))")1+ε"(%#('!))"+
"
cosθ

(1+(%#('!))"$"cos"/)"
+R" − (𝛿(𝑡#))"𝜀"(1+ε"(𝛿0(𝑡#))")4

$
"
, 

𝑥#(𝜃, 𝑡#) = 𝑡# − 𝜀𝛿0(𝑡#)(𝑟(𝜃, 𝑡#) − 𝜀𝛿(𝑡#)) ,   𝛿0(𝑡#) =
1%('!)
1'!

                                  (2) 

 

)x( 3d

2x 0=
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Here  is a parameter and 𝑡# ∈ (−∞,+∞). The following equations are produced for the 
elements of the unit normal vector of the surface S2 by using Eq. (2): 
 
𝑛2 = 𝑟(𝜃, 𝑡#)	

34(/,'!)
3'!

[𝐴(𝜃,z )]-1  𝑛/ = <34(/,'!)
3/

32(/,'!)
3'!

- 32(/,'!)
3/

34(/,'!)
3'!

= [𝐴(𝜃,z )]-1 

𝑛4 = 𝑟(𝜃, 𝑡#)	
34(/,'!)
3'!

[𝐴(𝜃, 𝑡#	)]-1                                                                                                  (3) 

 
𝐴(𝜃, 𝑡#) as follows: 

	

𝐴(𝜃, 𝑡#) = >
?𝑟(𝜃, 𝑡#)

34(/,'!)
3'!

@
"
+ ?𝑟(𝜃, 𝑡#)

34(/,'!)
3'!

@
"
+

?	34(/,'!)
3/

	32(/,'!)
3'!

− 34(/,'!)
3'!

32(/,'!)
3/

@
" A

!/"

                                       (4)                    

 
After that, the quantities related to the matrix material will be shown with Eq. (1) and the 

quantities related to the CNT with Eq. (2) superscripts. It is assumed that equilibrium equations, 
strain-displacement relations and constitutive equations are provided for each of the CNT and 
viscoelastic matrix materials: 
 
𝛻7C𝜎(8)79E𝑔9

: + 𝛻9𝑢(8):HI = 0,                                                            (5) 
 
2𝜀:;

(8) = 𝛻:𝑢;
(8) + 𝛻;𝑢:

(8) + 𝛻:𝑢(8)9𝛻;𝑢(8)9,                                                    (6) 

𝜎(79)
(8) = ?𝜆<

(8)𝑒(8)(𝑡) + ∫ 𝜆(8)(𝑡 − 𝜏)𝑒(8)(𝜏)'
< 𝑑𝜏@ 𝛿79 + 2?𝜇<(8)𝜀(79)

(8) (𝑡) + ∫ 𝜇(8)(𝑡 −'
<

𝜏)𝜀(79)
(8) (𝜏) 𝑑𝜏@,  𝑒(8) = 𝜀!!

(8) + 𝜀""
(8) + 𝜀##

(8)   
 
The stress and strain tensors' respective physical components are specified by 𝜎(in)

(8) and 𝜀(in)
(8). 

Simultaneously, the S2 surface—the interface between the CNT and the matrix—is assumed to have 
ideal contact conditions. These conditions are given as follows: 

 
𝜎(")79E𝑔9

: + 𝛻9𝑢("):HQ=$𝑛: = 0,                       (7) 

𝜎(!)79E𝑔9
: + 𝛻9𝑢(!):HQ="𝑛: = 𝜎(")79E𝑔9

: + 𝛻9𝑢("):HQ="𝑛: = 0, 𝑢(!):Q
="
= 𝑢("):Q

="
          

 
𝜎44
(!)

	 4→@	
R⎯⎯⎯⎯⎯T𝑝,  𝜎7:

(!)
	 2→@	
R⎯⎯⎯⎯⎯T0,  i, j®	r, q, z                                       (8) 

 
Consequently, in the context of contact conditions Eq. (7) and Eq. (8), an analysis of Eq. (5) and 

Eq. (6) yields the general mathematical statement of the problem. 
 
3. Solution Method 

 
The aforementioned approach presents a boundary-value problem for a system of nonlinear 

partial differential equations. The problem is solved by using the border form perturbation approach 
as described by Akbarov et al., [31]. In this approach, the desired variables are expressed as a series 
of the tiny parameter e, incorporated in the equation representing CNT's central axis and indicates 
the extent of its curvature: 

3t
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Z𝜎(7:)
(;); 𝜀(7:)

(;); 𝑢(7)
(;)\ = ∑ 𝜀8 Z𝜎(7:)

(;),8; 𝜀(7:)
(;),8; 𝑢(7)

(;),8\@
8A! , (𝑖𝑗) = 𝑟𝑟; 𝜃𝜃; 𝑥#𝑥#; 𝑟𝜃; 𝑟𝑥#; 𝜃𝑥#, (𝑖) =

𝑟; 𝜃; 𝑥#                                                                      (9) 
 
The expressions in Eq. (9) are written in the relevant equations and it is obtained the system of 

equations for each approximation. The coefficients (𝜀;) in Eq. (9) is categorized based on the 
identical degrees of  and expands to series  and so for each approach, it is obtained the 
contact conditions provided at the  and surfaces. 
 
3.1 The Zeroth Approximation 

 
For this approximation, Eq. (5) and Eq. (6) will be provided exactly. Considering that nr=1, =0, 

nz=0, contact conditions Eq. (7) will be provided in r = R1 and r = R2. Furthermore, Eq. (8) conditions 
for the zeroth approximation takes the following form: 
 
𝜎zz
(!),0

	 4→@	
R⎯⎯⎯⎯⎯T𝑝,𝜎44

(!),<
	 2→@	
R⎯⎯⎯⎯⎯T0,  (ij) ≠ zz                                                      (10) 

 
By employing the zeroth approximation, one obtains nonlinear equations and contact conditions. 

The initial approximation (the zeroth) refers to the boundary value problem that needs to be analysed 
in order to determine the stability loss that occur when the CNT in the model is flat without curvature. 
In this instance, the nonlinear components in the equations generated for the zeroth approximation 
can be neglected since they will have very insignificant effects [31]. Therefore, assuming that the 
condition 𝛻9𝑢(8):,< ≪ 1 is provided, 𝑔9

: + 𝛻9𝑢(8):,< terms will be replaced by the 𝛿9
:  Kronecker 

symbols: 
 
𝛻7𝜎(8)7:,< = 0, 2𝜀:;

(8),< = 𝛻:𝑢7
(8),< + 𝛻;𝑢:

(8),<                      (11) 

𝜎(79)
(8),< = ?𝜆<

(8)𝑒(8)(𝑡) + ∫ 𝜆(8)(𝑡 − 𝜏)𝑒(8)(𝜏)'
< 𝑑𝜏@ 𝛿79 + 2?𝜇<(8)𝜀(79)

(8) (𝑡) + ∫ 𝜇(8)(𝑡 −'
<

𝜏)𝜀(79)
(8) (𝜏) 𝑑𝜏@   

𝑒(8),0=ε(rr)
(8),0+ε(θθ)

(8),0+ε(zz)
(8),0                                                        

𝜎(ij)
("),0b

2%=R$
= 0,      

 
𝜎(ij)
("),0b

2%=R"
= 𝜎(ij)

(!),0b
2%=R"

,𝑢(7)
("),0b

2%=R"
= 𝑢(7)

(!),0b
2%=R"

 ;(ij) = rr, rθ, rz	(i) = r, 𝜃, z                 (12) 

 
Thus, the Eq. (11) and the contact conditions Eq. (12) required to determine the zeroth 

approximation has been obtained. 
 
3.2 The First Approximation 

 
When the procedure applied for the zeroth approximation is applied for the first approximation 

within the framework of the same assumptions, the relevant equations are obtained as follows: 
 
𝛻7C𝜎(8)7:,! + 𝜎(8)79,<𝛻9𝑢(8):,!I = 0                       (13) 
2𝜀7:

(8),! = 𝛻:𝑢7
(8),! + 𝛻7𝑢:

(8),!             

e ( )3R, , tq

1r R= 2r R=

nq
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𝜎(79)
(!),< = d𝜆<

(!)𝑒(!)(𝑡) + e 𝜆(!)(𝑡 − 𝜏)𝑒(!)(𝜏)
'

<
𝑑𝜏f 𝛿79

+ 2d𝜇<(!)𝜀(79)
(!) (𝑡) + e 𝜇(!)(𝑡 − 𝜏)𝜀(79)

(!) (𝜏)
'

<
𝑑𝜏f 

 
𝑒(8),! = 𝜀(!!)

(8),! + 𝜀("")
(8),! + 𝜀(##)

(8),!                                                     (14) 
 
The first approximation's contact conditions are given below: 
 

C𝜎(7)2I1,1
2,1

+f! <
3B('))
32

=
1,0

2,0
+ 𝜙! <

3B('))
34

=
1,0

2,0
+γ2C𝜎(7)2I1,0

2,0
+γ/C𝜎(7)/I1,0

2,0
+γ4C𝜎(7)4I1,0

2,0
=0                (15) 

C𝑢(7)I1,1
2,1

+f! <
3C(')
32
=
1,0

2,0
+ 𝜙! <

3C(')
34
=
1,0

2,0
=0  

C𝜎(7)2I!,!
2,1

+f! <
3B('))
32

=
!,<

2,0
+ 𝜑! <

3B('))
34

=
!,<

2,0
+γ2C𝜎(7)2I!,<

2,0
+γ/C𝜎(7)/I!,<

2,0
+γ4C𝜎(7)4I!,<

2,0
=0,  

𝑖 = 𝑟, 𝜃, 𝑧                                                                                                         
 
The first approximation is obtained by using the provided equations and contact conditions. The 

abbreviations used in Eq. (15) are as follows: 
 
[𝜑]!,8

2,k = 𝜑("),8 − 𝜑(!),8,                       (16) 
[𝜑]2,k = 𝜑("),8, 𝑓!=δ(𝑡#)cosθ, 𝜑!=-R dδ('!)

dt!
cosθ 

𝛾2 = ?%('!)
D

− 1"%('!)
dt!
" 𝑅@ cosθ, 𝛾/ =

%('!)
D

sinθ, 𝛾4=- dδ('!)
dt!

cosθ                             

 
The materials used to construct the SWCNT and the viscoelastic matrix are distinct. Matrix 

material and CNT Poisson rates are denoted as 𝜐(!) and 𝜐(") whereas Young modulus of matrix 
material and CNT are denoted as E(1) and E(2), respectively. It is accepted that 𝜐(") = 𝜐<

(!) and 
𝜐(!)Q =

'A<
𝜐<
(!) (t is time). In the zeroth approximation, the stresses caused by 𝜐(") ≠ 𝜐(!) for t > 0 will 

not be taken into account because their order is O(υ(2) - υ(1)). Furthermore, as stated by Babich et 
al.,  [32], do not significantly impact numerical outcomes. For the zeroth approximation, the following 
equations are found in this instance: 

 
𝜀zz
(!),0=εzz

("),0 = E
F∗($)

, 𝜎44
(!),< = 𝑝, 𝑢4

(!),< = 𝑢4
("),< = E

F∗($)
𝑧,                                   (17) 

𝑢/
(!),< = 𝑢/

("),< = 0, 𝑢2
(!),< = −𝜈∗(!)𝜀44

(!),<𝑟, 𝑢2
("),< = −𝜈(")𝜀44

("),<𝑟, 𝜎22
(!),< = 𝜎22

("),< = 𝜎//
(!),< = 𝜎//

("),< =
0 

𝜎44
("),< = 𝑝 F(")

F∗($)
, 𝜎/4

(!),< = 𝜎/4
("),< = 𝜎24

(!),< = 𝜎24
("),< = 𝜎2/

(!),< = 𝜎2/
("),< = 0                    

 
The following operators are represented by 𝐸∗(!) and 𝜈∗(!): 

 
𝐸∗(!) = 𝐸<

(!) + ∫ 𝐸(!)'
< (𝑡 − 𝜏)𝑑𝜏, 𝜐∗(!) = 𝜐<

(!) + ∫ 𝜐(!)'
< (𝑡 − 𝜏)𝑑𝜏                                       (18) 

 
Here 𝜈<

(!) and 𝐸<
(!) are the instant Poisson ratio and Young’s modulus [33]. Within the framework 

of the assumptions discussed above and considering the Eq. (17), when the Eq. (13) are written in 
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terms of the physical components of the relevant quantities in cylindrical coordinates, the following 
equations are obtained. 

 
3B))

(+),$

32
+ !

2
3B)-

(+),$

3/
+ 3B).

(+),$

34
+ !

2
?𝜎22

(8),! − 𝜎//
(8),!@ + 𝜎44

(8),< 3"C)
(+),$

34"
= 0,                  (19) 

3B)-
(+),$

32
+ !

2
3B--

(+),$

3/
+ 3B-.

(+),$

34
+ "

2
𝜎2/
(8),! + 𝜎44

(8),< 3"C-
(+),$

34"
= 0, 

3B).
(+),$

32
+ !

2
3B-.

(+),$

3/
+ 3B..

(+),$

34
+ !

2
𝜎24
(8),! + 𝜎44

(8),< 3"C.
(+),$

34"
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These equations are observed to be in accordance with the three-dimensional linearized stability 

equations. Guz [34] when checked directly. Moreover, the geometrical relations as following: 
 

𝜀rr
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p,𝜀θz
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The explicit form of the equation of the centreline of CNT given by Eq. (1) is as follows:                             

 

𝑥!=Aexp o− ?H!
I
@
"
p cos ?𝑚 H!

I
@ =εLexp o−?H!

I
@
"
p cos ?𝑚 H!

I
@ =εδ(𝑥#)                                    (21) 

 
The e in Eq. (21) is chosen as ε= J

I
 with the  acceptance. The contact conditions Eq. (15) for 

the initial approximation are as follows: 
 
?𝜎rr

(!),1 − 𝜎rr
("),1@b

(D",θ,t!)
= 0, ?𝜎rθ

(!),1 − 𝜎rθ
("),1@b

(D",θ,t!)
= 0,                  (22) 

?𝜎rz
(!),1 − 𝜎rz

("),1@b
(D",θ,t!)

= ?𝜎zz
(!),0-σzz

("),0@
dδ(𝑡#)

dt#
cosθ 

E𝑢2(!),1 − 𝑢2("),1HQ(D",θ,t!)=0, E𝑢/(!),1 − 𝑢/("),1HQ(D",θ,t!)=0,  

E𝑢4(!),1 − 𝑢4("),1HQ(D",θ,t!)=0, 𝜎rr("),1Q(D$,θ,t!)=0, 

𝜎rθ("),1Q(D$,θ,t!)=0, 𝜎rz("),1Q(D$,θ,t!) = 𝜎zz
("),0 dδ('!)

dt!
cosθ                              

 
For the solution of these equations, the following representation will be used by taking the Eq. 

(19) into consideration [34]: 
 

𝑢2
(8) = !

2
3
3/
𝜓(8) − 3"

3234
𝜒(8), 𝑢/

(8) = − 3
32
𝜓(8) − !

2
3"

3/34
𝜒(8),                   (23) 

𝑢4
(8) = (𝜆(8) + 𝜇(8))K! ?(𝜆(8) + 2𝜇(8))𝛥! + (𝜇(8) + 𝜎44

(8),<) 3"

34"
@ 𝜒(8),  

𝛥! =
3"

32"
+ !

2
3
32
+ !

2"
3"

3/"
.                   

 
The 𝜓(8), 𝜒(8) functions provide the following equations: 
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𝜉7
(8) (k=1,2 ; i=1,2,3) in Eq. (24) is defined as follows: 

 

𝜉!
(8) = vL(+)*B..

(+),/

L(+)
, 𝜉"

(8) = vL(+)*B..
(+),/

L(+)
, 𝜉#

(8) = vM(+)*"L(+)*B..
(+),/

M(+)*"L(+)
                         (25) 

 
The above equations are subjected to the exponential Fourier transform by 𝑧 = H!

I
 in order to 

resolve the boundary value problem associated with the first approximation: 
 

𝑉x (𝑟, 𝜃, 𝑧) = ∫ 𝑉(𝑟, 𝜃, 𝑧)𝑒K7H!4𝑑𝑥#
@
K@                                                                        (26) 

 
The following equations result from solving Eq. (24) differential equations taking into account the 

equilibrium equations and contact conditions after the Fourier transformation is applied. 
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In Eq. (27), £:

(N) = 𝜉:
(N)𝑠 2

I
, (𝑗 = 1,2,3; 	𝑞 = 1,2),  is the Bessel functions and is the 

Macdonald functions. When the functions in Eq. (23) are written in related equations, a system of 
linear equations consisting of 15 equations with 15 variables is created. By solving this linear equation 
system, the unknowns are determined. The values of the stresses and displacement after applying 
Fourier transforms are obtained using the unknowns. The inverse Fourier transform is then used to 
obtain real values. The boundary value problem for the first approximation has been concluded in 
this manner. The further iterations, starting with the second approximation, do not have any impact 
on the final outcomes, as demonstrated by Kosker [33]. Therefore, the first approximation is 
sufficient for obtaining the numerical outcomes. 

 
4. Numerical Results and Discussion 

 
In the numerical results, it is utilized the parameters 𝑅" = 𝑅 for the outer radius, 𝑅! for the inner 

radius and h for the thickness of the CNT. D
I
 and O

I
 are defined as dimensionless parameters. 

Considering that the material examined is CNT, the value range determined for the relevant 
parameters is as follows [23]. 
 

400 ≤ F(")

F/($)
≤ 1000, 0.15 ≤ O

I
≤ 0.35, 0.25 ≤ D

I
≤ 1.                                                 (28) 

 
𝐸<(!) is the viscoelastic matrix's initial value. Rabotnov operators has been used to describe the 

constitutive relations for the viscoelastic matrix [35]. 
 
 
 

nI (x) nK (x)
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𝐸∗(!) = 𝐸<
(!)[1 − 𝜔<𝑅P0∗ (−𝜔< − 𝜔@)]                     (29) 

𝜐∗(!) = 𝜐<
(!) �1 +

1 − 2𝜐<
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2𝜐<
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3
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($)(!*R/
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#

"(!*R/
($))
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𝐸<
(!) and 𝜐<

(!) shown in Eq. (29) are instantaneous value of Young's modulus and instantaneous 
value of Poisson coefficient, respectively. Furthermore, 𝜆<

(!) and 𝜇<
(!) precisely determine the 

instantaneous values of Lamé's constants. The matrix material's rheological properties consist of 𝛼′, 
𝜔< , 𝜔@ and 𝑅P0∗ , which represents the fractional-exponential Rabotnov operator [35]. The reason 
why Rabotnov operator are preferred in this study is that it allows the first parts of the experimental 
and theoretically created creep and relaxation graphs to be examined with high precision. 
Furthermore, the operator takes into account the asymptotic values of the identified graphs with 
high precision when the time goes to infinity. It also ensures practicality in mathematical operations. 
In addition, the dimensionless rheological parameter, denoted as w and the dimensionless time, 
denoted as t’, respectively and expressed as 𝜔 = 𝜔@/𝜔< and 𝑡′ = 𝜔<!/(!*P0)𝑡. Furthermore, it is 
supposed that 𝜐<

(!) = 𝜐(") = 0.3 and Є = 𝑝/𝐸<
(!). According to Akbarov et al., [29], the following 

inequalities must be satisfied by the external compressive force p while examining the stability loss 
problems of viscoelastic materials: 

 

Є,2,@ o=
E0),1
F/
($) p ≤ Є o= E

F/
($)p ≤ Є,2,< o=

E0),/
F/
($)p                                                     (30) 

 
where Є,2,< is the critical load obtained at 𝑡′ = 0 and Є,2,@ is the critical load obtained at 𝑡′ = ∞. 

Table 1 shows the values of Є,2|'0A< = Є,2,< for F
(")

F/
($) the ratio of modulus of elasticity, D

I
 the outer 

radius of SWCNT and the values of Є,2|'0A@ = Є,2,@ acquired for numerous 𝜔 and the results are 

presented for 𝛼 = −0.5. Besides, when F(")

F/
($) values increase, the value of Є,2,< decrease 

monotonically. Also, as the increase of thickness of CNT, Є,2,< declines. Furthermore, the Є,2,@ values 
increase when the ω rheological parameter rises, whereas there is no relationship between the 
critical load and the 𝛼 parameter. 
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Table 1 
For diverse values of and h/L, values at 

 and  values at  (α=-0.5, R/L=0.5) 

 
h/L  (α=-0,5)  

ω=0.5 ω=1.0 ω=2.0 ω=3.0 
500 0.35 0.0544 0.0306 0.0375 0.0439 0.0466 

0.25 0.0648 0.0363 0.0449 0.0524 0.0557 
0.15 0.0846 0.0480 0.0592 0.0690 0.0724 

800 0.35 0.0422 0.0232 0.0290 0.0338 0.0362 
0.25 0.0507 0.0281 0.0349 0.0408 0.0436 
0.15 0.0667 0.0372 0.0463 0.0539 0.0577 

1000 0.35 0.0375 0.0208 0.0257 0.0307 0.0322 
0.25 0.0449 0.0249 0.0309 0.0364 0.0385 
0.15 0.0592 0.0332 0.0413 0.0480 0.0509 

 
Table 2 shows that the critical load is unaffected by the outer radius of CNT. parameter does not 

have an effect on the critical load.  
It is seen in Table 2 that outer radius of CNT has no effect on critical load. This means that when 

the thickness of the CNT is constant, the space in the CNT (indicated by the R1 in Figure 1) is not 
significant.  

 
Table 2 
For diverse values of and R/L,  values at  (h/L=0.35) 

 R/L 
1 0.8 0.7 0.5 0.35 0.3 0.28 0.27 0.26 0.255 

500 0.0648 0.0648 0.0649 0.0648 0.0649 0.0649 0.0649 0.0652 0,0648 0,0648 
800 0.0508 0.0506 0.0509 0.0507 0.0509 0.0506 0.0507 0.0507 0.0506 0.0508 
1000 0.0449 0.0449 0.0449 0.0449 0.0454 0.0450 0.0450 0.0450 0.0449 0.0450 

 
As can be seen in Table 3, the critical time 𝑡′,2  is calculated for various values of the parameters 

F(")

F/
($),  and Є,2,@. The findings are provided for the value of 𝜔 = 0.5. The Є,2  values are chosen from 

the range between Є,2,< and Є,2,@ as specified in Table 1. As the specified values converge to Є,2,<, 
the critical time 𝑡′,2 → 0 and when the values converge to Є,2,@, the critical time 𝑡′,2 → ∞ as 
expected. Moreover, Table 3 reveals a negative correlation between 𝑡′,2  values and the absolute 
value of the rheological parameter α. 
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Table 3  
For diverse values of  and , 

 values (ω=0.5, h/L=0.25, R/L=0.5) 

   

α=-0.3 α=-0.5 α=-0.7 
500 0.0479 0.0930 0.0450 0.0093 

0.0492 0.0588 0.0250 0.0034 
0.0505 0.0349 0.0122 0.0011 
0.0518 0.0173 0.0045 0.0002 
0.0531 0.0055 0.0012 0.0000 

800 0.0372 0.0905 0.0456 0.0092 
0.0382 0.0592 0.0254 0.0034 
0.0392 0.0357 0.0124 0.0012 
0.0402 0.0183 0.0048 0.0007 
0.0412 0.0061 0.0011 0.0001 

1000 0.0331 0.0852 0.0421 0.0080 
0.0340 0.0550 0.0228 0.0029 
0.0349 0.0324 0.0108 0.0009 
0.0358 0.0156 0.0040 0.0001 
0.0367 0.0044 0.0006 0.0000 

  
It is demonstrated in Figure2 that when rheological parameter values w increases, 𝑡′,2  values rise.             

 

 
Fig. 2. For diverse values of and , 

 values (α=-0.3, R/L=0.5, h/L=0.35) 

 
 Furthermore, Table 4 demonstrates a correlation between a drop in the values of 𝑡′,2  and a 

reduction in the ratio F
(")

F/
($). Additionally, Є,2  value decreases as F

(")

F/
($) increases. 𝑡′,2  values decline when 

this circumstance is considered in relation to critical time values. 
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Table 4  
For diverse values of ,  
values (α=-0.3, ω=1, R/L=0.5, h/L=0.35) 

   

0.0370 800 0.12540 
850 0.06920 
900 0.03450 
950 0.01360 
1000 0.00200 
1050 0.00004 

 
When the value of R1 is 0, the subject turns a stability loss problem in a medium that is both 

endlessly viscoelastic and includes an infinitely long fibre with locally curved. Under these 
circumstances, the value of the critical load is determined as Є,2 = −0.0982 for 𝜔 = 2, 𝛼 = −0.5, 
F(")

F/
($) = 50. It closely approximates the Є,2 = −0.0985 value found by Guz [34], which used the same 

characteristics to study the stability loss of a viscoelastic body comprising fibres that have local 
curvature. Our Fortran-based approach, algorithms and the accuracy of the methodology are clearly 
demonstrated by this. Furthermore, the augmentation (reduction) of the rheological parameter 𝜔 
(|𝛼|) leads to an increase in the critical time, as stated by Akbarov et al., [36]. This outcome is 
congruent with the findings of this investigation. 

The theoretical approach utilized in this study, specifically the Three-Dimensional Linearized 
Theory of Stability (TDLTS), offers several advantages over other modelling techniques or 
experimental methods. One of the key advantages is its ability to provide detailed insights into the 
stability loss of viscoelastic materials under varying conditions without the need for complex and 
costly experimental setups. This method allows for the precise analysis of critical parameters, such 
as critical load and time values, which are difficult to measure experimentally at the nanoscale. 
Furthermore, the theoretical framework is adaptable, enabling the investigation of a wide range of 
material properties and configurations, including those with initial defects or complex geometries. 

However, the theoretical approach also has limitations. It relies heavily on simplifying 
assumptions, such as ideal material behaviour and uniform distribution of forces, which may not fully 
capture the complexities of real-world scenarios. Additionally, the accuracy of the results is 
contingent upon the validity of the input parameters and the mathematical models used. Compared 
to experimental methods, theoretical models may lack the ability to account for unforeseen 
environmental factors or material imperfections that could significantly influence the outcomes. 
Similarly, while molecular dynamics simulations offer atomistic-level precision, they are 
computationally expensive and limited in scale, making the TDLTS approach a more feasible 
alternative for large-scale studies. 

By highlighting these advantages and limitations, this study aims to provide a balanced 
perspective on the applicability and reliability of the theoretical approach, offering a foundation for 
future research to build upon and complement with experimental validation. 

 
5. Conclusion 

 
Numerous aspects relating to the stability loss of the composite material created by adding single-

walled and local curvature CNT to a viscoelastic matrix were given numerical findings. SWCNT is 

(2) (1)
0E E crt '

crЄ (2) (1)
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considered as a continuous material and modelled as a hollow cylinder with infinite length. 
Continuum mechanics principles are utilised for the solution. 

Moreover, it is assumed that there is a defect in the modelled nanotube that may have occurred 
during the processes. Current calculations were made via TDLTS. The fact that the initially accepted 
defect, in other words the local curvature, gradually grows and goes to infinity is recognized as the 
criteria for stability loss and the load value at this specific point is designated as the critical load. All 
of the results are obtained from zero and the first approach. Since the 2nd and subsequent 
approaches do not have a significant effect on the results, it is sufficient to restrict to the 1st 
approach. 

Stability analysis of a single-walled CNT with an initial primitive defect embedded in a viscoelastic 
medium using a 3D approximate analytical method has been described for the first time in the 
literature using TDLTS. 

In the related problem, the modulus of elasticity for SWCNT is 𝐸(") and the starting value of the 

viscoelastic matrix's modulus of elasticity is 𝐸<
(!). The ratio of F

(")

F/
($) is included in the computations as 

1000, 800 and 500. When examining the impact of this ratio on the related parameters, it becomes 

evident that as the ratio F
(")

F/
($) grows, the critical load values decline. Critical time values, on the 

contrary, increase with increasing F
(")

F/
($). Upon examining the impacts of the rheological factors w and 

α on the findings, it is determined that the critical load values rise as the w parameter increases. 
However, the α parameter does not have impact on the critical load. Furthermore, there is an inverse 
relationship between the rheological parameter α and the critical time, the critical time values 
decrease as the absolute value of rheological parameters α increase. However, there is a direct ratio 
between the rheological parameter α and the critical time and as w increases, the critical time values 
also increase.  

Based on these findings, properties such as the radius and thickness of the reinforcing SWCNT 
can be determined by the desired properties of the composite material to be produced. In addition, 
the parameters of the viscoelastic medium can be selected in the same way. Thus, the cost of the 
planned experiments is reduced. Obtaining theoretical results for carbon nanotubes, which have an 
essential role in damping viscoelastic materials, will be pioneering and guiding in the transformation 
of processes into practice. 

The findings of this study provide valuable insights for the design and optimization of viscoelastic 
reinforced carbon nanotube (CNT) composites. Specifically, such materials can be utilized in damping 
applications where energy dissipation is crucial, such as in aerospace and automotive components. 
Moreover, the ability to predict critical load and time values offers significant advantages in designing 
lightweight and high-strength structural materials for use in advanced engineering fields. For 
instance, the critical load data can guide the development of composite materials used in vibration 
control systems, while the time-dependent viscoelastic properties can enhance the durability and 
stability of flexible electronics and biomedical devices. 

To advance the understanding and application of viscoelastic reinforced carbon nanotube (CNT) 
composites, several avenues for future research can be explored. First, investigating the effects of 
different nanostructure geometries, such as helical or branched CNTs, could provide valuable insights 
into the mechanical behaviour and stability characteristics of these materials. Second, employing 
alternative viscoelastic models, including fractional derivative models or advanced constitutive 
equations, could enhance the accuracy and applicability of theoretical predictions. Third, 
incorporating multiphysics phenomena, such as thermal effects, electrical loading or fluid-structure 
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interactions, into the analysis would allow for a more comprehensive understanding of CNT 
composites under realistic operating conditions. These research directions not only extend the scope 
of current findings but also provide a roadmap for integrating experimental and theoretical efforts 
to address complex challenges in the field of nanomaterial engineering. 
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