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Early and accurate detection of plant diseases is crucial for maintaining crop health and
ensuring agricultural productivity. This study investigates the classification of betel leaf
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and vine diseases using a hybrid Convolutional Neural Network-Long Short-Term
Memory (CNN-LSTM) architecture, designed to capture spatial patterns and model
structured spatial dependencies by treating CNN-extracted feature representations as
ordered sequences within static leaf and vine images, rather than temporal dynamics.
To address vulnerabilities to adversarial perturbations, which can mislead standard
deep learning models even with visually imperceptible changes, this work incorporates
adversarial training based on the Projected Gradient Descent (PGD) method. A curated
dataset of betel leaf images, including both natural and adversarially perturbed
samples, is used to train and evaluate the model. Experimental results demonstrate that
the adversarially trained CNN-LSTM maintains high classification accuracy 96.96%,
achieves Fl1-score of 96.25%, and robustness accuracy under PGD attacks of 92.19%.
Class-wise analyses using precision, recall, and F1-score confirm balanced performance
across all disease categories, highlighting the model’s reliability under challenging input
conditions. These findings underscore the importance of integrating robustness-
focused strategies in deep learning systems for plant disease detection and provide
insights that can guide the development of more robust Al solutions for agricultural
imaging applications, while future work is required to assess performance under field
conditions and deployment constraints.
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1. Introduction

The use of artificial intelligence (Al) in agriculture has gained attention for automated plant
disease detection, where early and accurate diagnosis reduces crop loss, improves yield, and
supports sustainable practices [1,2]. Betel leaf cultivation, economically important in many regions,
is highly susceptible to diseases, highlighting the need for reliable diagnostic systems. Deep learning,
particularly convolutional neural networks (CNNs), performs well in image-based plant disease
classification [3] but is vulnerable to adversarial perturbations, small, visually imperceptible changes
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that can cause confident misclassifications [4,5]. To address this, we propose a robust framework
integrating CNNs with long short-term memory (LSTM) layers [6] and adversarial training [7]. CNN
layers extract discriminative spatial features, while LSTM layers model dependencies to capture
disease-related patterns effectively [8]. Iterative gradient-based adversarial samples are
incorporated during training to improve robustness and maintain classification performance.
Evaluation on a curated betel leaf dataset demonstrates high accuracy and enhanced resistance to
adversarial interference, providing a foundation for robust plant disease detection applicable to
other crops [9].

To ensure real-world applicability, a betel leaf and vine image dataset was curated from active
farms, capturing variations in disease severity, leaf maturity, lighting, and background [10]. Images
were classified into Healthy Betel Vine, Healthy Leaf, Rot Disease, and Spot Disease, with data
augmentation (rotation, flipping) applied to improve variability and reduce overfitting [11]. An
adversarial dataset was generated using projected gradient descent (PGD) [7] and incorporated via a
custom data generator alternating between natural and adversarial batches [12]. This dual dataset
enabled rigorous evaluation of both accuracy and resilience [13], critical for Al systems in agriculture
where errors can cause economic loss [14]. While adversarial robustness is well-studied in computer
vision [15], it remains underexplored in agricultural imaging, with unique dataset characteristics
challenging model stability and generalization [16].

This study is guided by two research questions: RQ1 examines why conventional CNN-based plant
disease models are vulnerable to adversarial perturbations and how this limits their deployment
under variable field conditions, while RQ2 investigates whether adversarial training enhances the
robustness and performance of a hybrid CNN-LSTM model for betel leaf disease classification. Figure
1 illustrates the study workflow, from motivation and related work to methodology, experiments,
evaluation, and conclusions. To support realistic evaluation, a dedicated betel leaf image dataset was
collected from active farms, capturing diverse health and disease conditions and augmented for
generalization. An adversarial version was generated via projected gradient descent (PGD) and
incorporated using a custom data generator alternating between clean and adversarial batches,
creating a rigorous dual-mode training environment reflective of practical agricultural challenges.

Despite deep learning’s success in plant disease detection, a key gap remains in robustness to
adversarial perturbations in agricultural imaging. Conventional CNNs achieve high accuracy on clean
data [28] but are highly vulnerable to small adversarial changes [29-31], causing confident
misclassifications and reduced reliability under variable field conditions. Although adversarial
robustness is widely studied in computer vision [15], its use in crop-specific detection, especially for
economically important crops like betel leaf, remains limited. This gap matters because unreliable Al
diagnostics can cause misjudgement, delayed intervention, economic loss, and reduced trust among
farmers and policymakers [19,20]. This study proposes a hybrid CNN-LSTM model trained on both
natural and adversarial images [17,18] to assess adversarial robustness using a custom dataset, apply
tailored adversarial training strategies [21,22], and compare performance under clean and perturbed
conditions [23-25]. The goal is a robust, deployable architecture that maintains accuracy and stability
in real agricultural environments [26,27].

2. Literature Review

Deep learning is promising for plant disease detection, but variable lighting, background noise,
and temporal changes limit real-world reliability. CNNs, adversarial vulnerabilities, and CNN-LSTM
hybrids have been studied, yet robustness in agricultural settings remains underexplored. This study
evaluates whether adversarially trained CNN-LSTM models sustain accuracy and stability under
realistic perturbations.
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2.1 Deep Learning in Agricultural Applications

The application of deep learning in agriculture has grown rapidly over the past decade, driven by
the need for scalable, accurate, and automated solutions in crop monitoring and disease detection.
Kamilaris and Prenafeta-Boldu [1] highlighted the broad potential of deep learning in agriculture,
emphasizing its role in tasks such as yield prediction, land use classification, and plant disease
identification. Similarly, Liakos et al. [2] reviewed how machine learning supports decision-making
across the agricultural value chain, from field to market.

Plant disease detection, in particular, has received considerable attention. Mohanty et al. [3]
demonstrated the effectiveness of convolutional neural networks (CNNs) in identifying plant diseases
from leaf images. Their findings revealed that CNNs could achieve high classification accuracy, making
them suitable for practical field applications. Ferentinos [14] further supported this by applying deep
learning to real-world datasets and achieving robust performance under varied conditions.

Despite these promising results, most studies assume clean input conditions, limiting their
applicability in complex environments. Barbedo [10] stressed that real-world agricultural images
often contain noise, inconsistencies in lighting, and background clutter, which can degrade model
performance. This creates a gap between laboratory accuracy and field reliability.

2.2 Adversarial Robustness and Its Relevance to Agriculture

While deep learning models excel in image classification, their vulnerability to adversarial
examples has raised significant concerns. Yuan, Xiaoyong, et al. [4] were among the first to reveal
that small, often imperceptible, perturbations in input images can mislead neural networks. Madry
et al. [7] introduced adversarial training as an effective defense mechanism, where models are
trained on adversarial samples to improve robustness. Croce and Hein [13] further demonstrated
that many proposed defenses are less effective under strong evaluation attacks, reinforcing the
importance of building inherently robust architectures.

Although adversarial robustness has been extensively studied in domains like cybersecurity and
autonomous driving, its application in agriculture remains relatively underexplored. Singh et al. [9]
observed that robust model behavior is critical for plant stress detection, especially when
environmental variability is high. Our research addresses this gap by applying and evaluating
adversarial training within agricultural disease detection.

2.3 Hybrid Deep Learning Architectures for Temporal and Spatial Features

Traditional CNN models are effective at extracting spatial features, but they often lack the ability
to capture sequential dependencies or dynamic environmental changes. To overcome this, hybrid
models that combine CNNs with recurrent neural networks such as LSTMs have been proposed.
Xingjian et al. [6] introduced the ConvLSTM model, which merges convolutional operations with
LSTM cells to process spatiotemporal data effectively. Zhu et al. [8] highlighted the applicability of
such models in remote sensing, emphasizing their capacity to handle sequential visual patterns.

Although CNN-LSTM architectures have been successfully applied in domains such as remote
sensing and spatiotemporal modeling, their adoption in plant disease classification remains limited,
and their integration with adversarial training in agricultural imaging has not been systematically
explored. Additionally, real-world agricultural datasets often exhibit limited diversity and class
imbalance, which can affect model training and generalization.
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3. Methodology

This section outlines the methodology used to investigate the adversarial vulnerability of CNN-
based models and the effectiveness of adversarial training in improving the robustness of a CNN-
LSTM architecture for classifying betel leaf diseases. The methodology is structured into five
components: problem formulation, data preparation, model design, adversarial attack generation,
and adversarial training and evaluation.

Figure 1 synthesizes the complete methodological pipeline of this study, illustrating how raw
betel leaf images are systematically transformed into robust disease predictions through tightly
integrated stages of preprocessing, model development, and adversarial learning. Figure 1 highlights
the dual training strategy, clean and PGD-based adversarial learning, which reinforces the CNN-LSTM
architecture to extract resilient spatial features and model structured dependencies across spatial
feature sequences, while exhibiting improved robustness under adversarial perturbations. Overall,
this end-to-end workflow demonstrates a coherent and practical approach to addressing adversarial
vulnerability in agricultural image classification, directly aligning the methodological design with the
study’s robustness-driven objectives.
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Fig. 1. Overview of the proposed CNN-LSTM framework with PGD-based adversarial training

295



Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 55, Issue 1 (2026) 292-311

3.1 Problem Formulation

This study aims to address two primary questions: (1) how standard CNN models respond when
input images are subtly altered by adversarial perturbations (RQ1), and (2) whether incorporating
adversarial training can improve the stability and reliability of a CNN-LSTM model for classifying betel
leaf diseases (RQ2). The task is formulated as a supervised image classification problem, where the
model fy maps an input image xeR7*W*3 to a predicted label y € {1,2, ..., C}. Model parameters
0 are optimized by minimizing the categorical cross-entropy loss.

L(x,y) = —log fo(x)y (1)

In this context, adversarial robustness refers to the ability of the classification model to preserve
correct disease predictions when input images are perturbed within a bounded and visually
imperceptible range, denoted x,q4,, constrained by a small perturbation limit || x,4, — X llo< €. Such
perturbations can expose vulnerabilities in the model’s decision boundaries, which, if unaddressed,
may lead to incorrect classifications in real-world agricultural applications.

The problem formulation establishes a framework for analysing the influence of adversarial
inputs on model performance and for exploring whether augmenting the training set with adversarial
examples can enhance the model’s resilience. This conceptual foundation informs the subsequent
methodological steps, including data preparation, model architecture design, adversarial example
generation, and robustness-focused training, providing a systematic approach to answer both RQ1
and RQ2.

3.2 Data Collection and Preprocessing

The dataset used in this study comprises images of betel leaves and their supporting stems,
organized into four functional categories: healthy leaf, healthy betel vine, spot disease, and rot
disease. While the primary focus is on leaf health, images of vines are included alongside healthy
betel leaves to provide additional structural context. The visual patterns of vines help the model
distinguish between healthy growth and early signs of disease, as vines often reflect subtle cues
associated with leaf pathology. By incorporating both leaf and vine features, the model is better
equipped to learn the anatomical relationships and contextual information necessary for accurate
disease classification, enhancing its performance under real-world farm conditions where leaves and
vines are captured together. Figure 2 presents representative samples from each dataset class,
illustrating variations in leaf texture, vein structure, color intensity, and visible disease symptoms.
The samples reflect the inherent heterogeneity of real-world agricultural imagery, including
differences in illumination, viewing angles, and background conditions. Such diversity is characteristic
of images captured in natural farm environments and underscores the need for robust feature
learning in plant disease classification. To standardize these visually diverse images, we implemented
a multi-stage preprocessing pipeline. First, all images were resized to 224 x 224 pixels using bilinear
interpolation. This resolution balances detail preservation with computational feasibility [33], while
ensuring compatibility with CNNs that expect fixed-dimension inputs. Next, pixel intensities were
normalized to the [0, 1] range, providing numerical stability and reducing sensitivity to variable
lighting conditions. This normalization is achieved through the standard transforms.ToTensor()
routine, which ensures consistent pixel scaling across training, validation, and testing sets.

To increase generalization capability, we applied controlled augmentation operations, random
rotations, horizontal flips, and modest brightness adjustments. Other works have explored
generative approaches such as GANs for creating additional synthetic samples to enrich training
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datasets [24]. These transformations simulate common field-level variations such as angled captures,
sunlight fluctuations, and natural movements of leaves due to wind. This step effectively broadens
the data distribution and encourages the model to learn more stable representations instead of
memorizing class-specific patterns.

Collectively, the preprocessing strategy ensures that the dataset is clean, consistent, and
sufficiently diverse to support the training of robust deep learning models. The visual variety
highlighted in Figure 2 underscores the necessity of such preprocessing measures, as it directly
influences downstream model stability and resilience against adversarial manipulations introduced
in later sections.

Healthy leaf Healthy Betel Vine

Fig. 2. Representative samples from the betel leaf and vine disease dataset

3.3 Model Architecture and Training

The proposed architecture integrates convolutional feature extraction with LSTM-based
dependency modeling to capture both local spatial patterns and structured relationships among
high-level spatial features. Here, the LSTM operates on ordered spatial feature sequences rather than
temporal data.

Figure 3 outlines the full pipeline, showing the progression of transformations from raw images
to final class probabilities. It presents a schematic overview of the architecture, highlighting the
progression from convolutional feature extraction to sequential dependency modelling and final
classification. This model detail configuration analysed in feature extraction module, sequential
modelling and classification layer sections.
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Fig. 3. Architecture of the proposed CNN-LSTM model for betel leaf disease classification
3.3.1 CNN feature extraction module
Given an input RGB image,

x € R224X224X3, (2)

The CNN module transforms it into a compact feature tensor through a series of convolution—
normalization-activation-pooling blocks.
For each convolutional block i, the operation is:

F; = MaxPool(o (BN(Convi(Fi_l)))) (3)

Where, is a convolution with kernel size 3 X 3, BN is batch normalization, o(-) denotes the RelLU
activation, F, = x. The filter depths are 32, 64, 128, and 128 respectively. Each convolution increases
the representational capacity of the network, allowing earlier layers to capture coarse edges and
colour transitions, while deeper layers respond to lesion boundaries, necrotic textures, mould -like
spots, and structural vine characteristics.

Residual shortcuts (shown in Figure 3) connect selected convolutional blocks and are defined as:

FIe = F, + W;F,_4, (4)

where W, matches the dimensions via a 1xlconvolution. This improves gradient flow and
stabilizes deeper feature learning important given the heterogeneous nature of the dataset (as
depicted in Figure 2) [34,35].

After the final block, the feature tensor has shape:

Fony € RH'xW'x128 (5)

with H' = W' = 14after sequential pooling.
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To provide an intuitive understanding of how the convolutional layers progressively encode visual
information, Figure 4 visualizes representative feature maps extracted at different depths of the
CNN. These feature activations illustrate the hierarchical nature of the learned representations,
moving from low-level appearance cues toward more abstract and semantically meaningful patterns
relevant to disease characterization.

Low Level

Mid Level

High Level

Fig. 4. Visualization of hierarchical feature representations extracted by the CNN

As illustrated in Figure 4, the early convolutional layers primarily respond to low-level visual
attributes such as edges, colour gradients, and basic vein structures, while intermediate layers begin
to emphasize localized texture irregularities and shape distortions. In contrast, deeper layers exhibit
increasingly coarse but semantically focused activations, highlighting regions associated with disease
symptoms such as lesion concentration, tissue degradation, and abnormal pigmentation. This
progressive abstraction demonstrates the CNN’s ability to filter out irrelevant background
information while preserving diagnostically salient regions. The incorporation of residual connections
further stabilizes this hierarchical learning process by maintaining feature continuity across layers,
which is particularly important given the variability in illumination, texture, and structural
composition present in the dataset. Collectively, these characteristics ensure that the extracted
feature tensor provides a robust and information-rich representation, well suited for subsequent
sequential modelling in the LSTM module.

3.3.2 Reshaping for sequential modelling and LSTM-based dependency modelling
To exploit spatial continuity across the leaf surface, the CNN output is reshaped into a sequence:
S = Reshape(Fyy) € RT*4, (6)
Where T=14x14 = 196 sequence steps, d= 128 feature per step.
This converts the 2D spatial map into a 1D ordered sequence. The reshaping follows a consistent

raster-scan ordering (row-major), ensuring reproducibility [36-37]. This transformation allows the
LSTM to learn structured spatial relationships among neighbouring regions of the leaf surface, such
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as correlated lesion patterns and texture transitions, without assuming temporal evolution. While
LSTM networks are conventionally used for temporal sequence modelling, in this work they are
adapted to model ordered spatial dependencies among high-level feature vectors extracted by the
CNN backbone. By reshaping CNN feature maps into sequential representations, the LSTM captures
long-range structural patterns related to disease morphology, vein structure, and texture continuity,
which are difficult to model using convolutional layers alone.

The sequence S is fed into a two-layer LSTM with hidden dimension h. For each time step t:

he, ¢ = LSTM (¢, he—y, Ce—1), (7)

Where h; is the hidden state, ¢, is the cell state.
The LSTM gates are:

fe = o(Wrse + Ughi_q + by, (8)
i =0(W;s¢ + Uphy_1 + by, (9)
¢, = tanh(W.s; + U .h;_, + b, (10)
o = o(W,s; + U,hi_1 + by, (11)
¢t =ft Oceg+iy OFE, (12)
h, = o, O tanh(c,), (13)

which together control how relevant spatial features propagate across the leaf surface.
The final hidden state h; serves as a compact representation of all contextual dependencies (e.g.,
co-occurring lesion regions, rot-affected areas, and disrupted vein structures).

To further illustrate how the LSTM processes the spatial feature sequence derived from the CNN
output, a visualization of LSTM activations across sequence steps and feature dimensions is
presented. This representation provides a qualitative illustration of how the LSTM aggregates spatial
feature information across ordered feature sequences corresponding to different spatial locations
on the leaf surface, highlighting variations in activation intensity as these dependencies are
integrated. By examining these activation patterns, it becomes possible to qualitatively assess how
the LSTM encodes contextual information beyond isolated local features.

The activation structure in Figure 5 shows that the LSTM forms a structured activation topology
across spatial sequence steps and feature dimensions, indicating that spatial dependencies are
hierarchically prioritized rather than uniformly spread across the leaf surface. Certain sequence
positions produce stronger responses, meaning the model selectively emphasizes diagnostically
salient regions, such as lesion clusters, discoloration, or vein disruptions. Instead of treating each
spatial location independently, the LSTM integrates information across neighbouring regions,
allowing localized anomalies to influence the global representation. This is valuable for agricultural
disease classification, where symptoms appear as spatially correlated patterns rather than isolated
pixels. The final hidden state thus encodes a holistic spatial context, capturing interactions between
healthy and diseased regions and complementing convolutional feature extraction. By converting
spatial feature maps into a dependency-aware representation, the LSTM enhances generalization
under challenging visual conditions and supports a more robust classification stage.
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Fig. 5. LSTM-based sequential aggregation of spatial feature representations
3.3.3 Classification layer and training configuration

The classifier maps the final state to class probabilities:

y = Softmax(Why + b), (14)
Where,
Ph= 2P0 g 12343 (15)

Yh,exp(zp)’
The model is trained to minimize the standard cross-entropy:

L(x,y) =— log()”/y) . (16)

Here, ¥, denotes the predicted probability corresponding to the true class y. The softmax
function converts the network’s outputs into a probability distribution, while the categorical cross-
entropy loss quantifies the discrepancy between predicted and true labels. Minimizing this loss
guides the model to assign higher confidence to the correct class, effectively translating the extracted
spatial and sequential features into accurate predictions. The subsequent table summarizes the
training configuration that supports this optimization process.

The table (Table 1) summarizes the main components of the training setup, reflecting the
deliberate design choices for both convergence efficiency and model robustness. Beyond the listed
parameters, it is important to note that the alternating batch strategy between clean and adversarial
images enables the model to simultaneously capture natural variations and defend against
perturbations, promoting a balanced feature representation. Additionally, the selected learning rate
schedule provides a gradual refinement of weight updates, reducing the risk of overshooting during
optimization and ensuring smoother convergence trajectories. Collectively, these training
considerations form a foundation for achieving high classification performance while maintaining
resilience to adversarial disturbances.
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Table 1

Training configuration and optimization settings of the proposed CNN-LSTM model

Parameter Values Purpose / Description

Optimizer Adam Provides adaptive learning rates for stable and
efficient convergence.

Initial Learning Rate 0.0005 Controls the initial step size during gradient updates.

Learning Rate Schedule

Step decay (x0.9 after epoch 10)

Gradually refines learning to improve convergence.

Batch Size

100

Balances computational efficiency and gradient
stability.

Loss Function

Categorical Cross-Entropy

Optimizes multi-class classification performance.

Evaluation Metrics Accuracy, Precision, Recall, F1- Quantitatively evaluates classification performance.
score

Number of Epochs 20 Ensures sufficient learning without overfitting.

Training Strategy Alternating clean and adversarial Improves robustness while preserving clean-data
batches accuracy.

Hardware Platform Google Colab with NVIDIA Tesla T4  Accelerates training and ensures reproducibility.
GPU

3.4 Adversarial Example Generation

Adversarial examples in this study are generated using the Projected Gradient Descent (PGD)
procedure, which constructs perturbations through an iterative update process while constraining
them within an €eo-bounded region. Let x denote a clean input image and y its corresponding class
label. The initialization step sets the adversarial counterpart to x&%” = x. For each iteration t =
0,1,...,T — 1, the adversarial sample is refined by applying a gradient-ascent step that maximizes the
classification loss, followed by a projection that enforces the perturbation limit. The update is defined
as:

XEH = Mg o (¢ + a - Sign(Ve L(f (x2), ¥))) (17)

where L represents the cross-entropy loss, f(-) is the CNN-LSTM classification model, and V,.L
denotes the gradient of the loss with respect to the input. The parameter a controls the step size (set
to 0.01), while edetermines the upper bound on the allowable perturbation (fixed at 0.02). The
projection operator HBE(X)(-) ensures that the updated sample remains within the valid e-ball around
the clean image. This projection is implemented as:
g (x)(z) = min (max (z,x —€),x + ¢€), (18)

followed by clamping the resulting pixel intensities to the valid image domain [0,1]. Together,
these steps guarantee that the perturbation remains visually imperceptible while still enabling the
iterative refinement needed for a strong adversarial effect. Repeated iterations (in this study, T=80)
allow PGD to follow a more accurate ascent path through the input space than single-step attacks
such as FGSM, thereby yielding adversarial examples that exhibit greater destructive potential while
still respecting the €oo constraint.

This formulation also clarifies the conceptual relationship between PGD and the Basic Iterative
Method (BIM). Although BIM applies iterative FGSM updates with clipping, PGD explicitly formulates
this process as a projection onto the £eo-bounded constraint set at every iteration, resulting in a more
general and theoretically grounded framework. PGD, in contrast, performs this projection at every
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step, which prevents the perturbation from drifting outside the allowable region. Thus, BIM can be
viewed as a special or restricted case of PGD, whereas the version adopted in this work adheres to
the full and more robust PGD framework.

Figure 6 presents adversarial examples generated at increasing values of €, showing that
perturbed images remain visually indistinguishable from the originals despite causing incorrect
model predictions. This highlights a key vulnerability of deep learning systems, where imperceptible
perturbations can induce misclassification. As € increases, adversarial strength grows without
introducing visible artifacts. These samples are used directly in the adversarial training process
described in Section 3.5 and form a core component of the robustness enhancement pipeline.

Clean (0) Iter 10 iter 40 Iter 80

Fig. 6. Visual comparison of original and PGD-generated adversarial images under
varying perturbation budgets (€)

3.4 Adversarial Example Generation

To defend against adversarial attacks and improve model robustness (in alignment with RQ2), we
incorporate adversarial training into the learning process. At each training step, adversarial examples
are generated during training and integrated with clean samples, used alongside clean images to
update model weights.

The training loop alternates between clean and perturbed batches, minimizing the combined loss:

Ltotal = L(X, y) + E-L(xadwy) (19)

Where, x: clean image, x_adv: adversarial image, B: scalar weighting factor empirically set to balance
clean accuracy and adversarial robustness during training.

Model performance is evaluated using accuracy on both clean and adversarial datasets, along
with class-wise precision, recall, and Fl-scores to capture detailed classification behaviour. Robust
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Accuracy is measured as the classification accuracy on adversarial samples generated at specified €
levels, providing a direct quantitative indicator of model resilience to adversarial perturbations [38].

The learning curves show that the adversarially trained model retains high accuracy and
generalization ability, even under perturbation. Metrics across classes remain balanced, confirming
that no specific class dominates or collapses under attack conditions. The figure demonstrates
consistent model convergence, with minimal overfitting and stable validation loss. These results
indicate that adversarial training not only enhances robustness but also preserves classification
fidelity validating the methodology’s effectiveness.
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0.8 4
1.0 A
> 0.7 1 s
© 1]
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Fig. 7. Training and validation learning curves of the adversarially trained CNN-LSTM model

Overall, the integration of PGD-based adversarial training within the proposed CNN-LSTM
architecture leads to improved robustness against iterative adversarial perturbations while
maintaining strong performance on clean data. By jointly leveraging convolutional feature extraction
for local pattern learning and sequential modelling for spatial dependency aggregation, the model is
able to learn representations that are less sensitive to bounded input distortions. The experimental
results indicate that exposure to adversarial samples during training contributes to more stable
decision boundaries, supporting reliable classification under both natural and adversarial conditions.
This balance between accuracy and robustness makes the proposed approach suitable for practical
agricultural disease classification scenarios, where input variability and potential perturbations are
expected.

4. Results and Discussion

This section presents the evaluation results of the CNN-LSTM model on both clean and
adversarially perturbed data. The discussion is structured to address two core research questions: (1)
assessing the vulnerability of conventional CNN-based models to adversarial inputs (RQ1), and (2)
evaluating whether adversarial training improves the model’s robustness and generalization (RQ2).

4.1 Performance Analysis on the Clean Dataset

The performance of the proposed CNN-LSTM model is first examined under clean, unperturbed
input conditions to establish a reliable baseline for subsequent robustness analysis. The analysis is
divided into two parts: first, an examination of the learning dynamics during training and validation,
and second, an assessment of the model’s generalization capability on an independent test set.
Establishing strong and stable performance on clean data is essential, as it provides the baseline
reference for analysing adversarial vulnerability and robustness in later sections.
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4.1.1 Training and validation performance

To analyse the learning behaviour of the proposed model, training and validation accuracy and
loss were monitored across 20 epochs. This evaluation provides insight into convergence
characteristics, optimization stability, and the model’s ability to generalize beyond the training data.

Figure 8 illustrates the evolution of training and validation accuracy and loss throughout the
learning process. At the initial stage of training, the model exhibits relatively low accuracy
(approximately 40.8%), which reflects the complexity of the multi-class classification task and the
variability inherent in real-world agricultural imagery. However, a rapid improvement is observed
within the first few epochs, indicating that the network progressively learns discriminative spatial
features and structured spatial dependencies across feature representations.

As training progresses, both training and validation accuracy increase steadily and converge to
final values of 96.13% and 96.88%, respectively. The close alignment between these curves suggests
effective generalization and an absence of significant overfitting. This observation is reinforced by
the corresponding loss trends: the training loss decreases consistently from 1.2942 to 0.1157, while
the validation loss declines from 0.8084 to 0.0868 by the final epoch. Importantly, no divergence
between training and validation loss is observed, indicating stable optimization despite the hybrid
model’s depth and complexity. Minor fluctuations in validation accuracy during intermediate epochs
are expected given the heterogeneous nature of field-acquired images, which include variations in
illumination, background clutter, and subtle inter-class similarities. Overall, the training dynamics
demonstrate that the CNN-LSTM architecture achieves smooth convergence and learns a compact
yet discriminative representation under clean input conditions.
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Fig. 8. Accuracy and loss convergence of the CNN-LSTM model under clean input conditions
4.1.2 Test-time performance on clean data

The evaluation of the CNN-LSTM model on the clean test dataset confirms its strong
generalization capability across all classes of betel leaf conditions. The overall test accuracy of 96.96%
with a corresponding loss of 0.1056 closely mirrors the validation performance observed during
training, indicating that the learned feature representations are robust and not overfitted to the
training data. Analysis of the confusion matrix (Figure 9a) reveals that the model maintains a high
degree of class-wise fidelity, correctly identifying nearly all instances of healthy leaves, healthy betel
vine, rot disease, and spot disease. Misclassifications are minimal, with the largest confusion
occurring between rot disease and healthy vine, reflecting the subtle visual similarities in early stages
of leaf degeneration, a nuance that the model largely overcomes.
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The detailed examination of precision, recall, and Fl-score across classes (Figure 9b) further
highlights the model’s effectiveness. Precision values ranging from 94.8% to 97.4% demonstrate that
the model is adept at limiting false positives, while recall values between 94.9% and 98.5% indicate
a strong capability to correctly identify true disease cases. The slightly higher recall observed for
certain classes suggests a conservative tendency, favouring the detection of actual disease instances
over the misclassification of healthy samples, a behaviour that aligns with practical agricultural
priorities, where failing to detect a disease can have more severe consequences than issuing a false
alert. The high and balanced F1-scores, spanning 94.8% to 97.7%, reflect that the model maintains
an equitable trade-off between precision and recall across all categories, without disproportionately
favouring any single class.
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Fig. 9. Test-phase predictive performance of the CNN-LSTM model under clean conditions

Collectively, these observations provide compelling evidence that the CNN-LSTM architecture
successfully captures both local and global spatial dependencies within the betel leaf imagery,
resulting in a model that performs consistently under ideal, unperturbed conditions. This establishes
a reliable baseline for evaluating adversarial robustness, addressing RQ1 by demonstrating that, in
the absence of perturbations, the model achieves both high accuracy and balanced class-wise
performance, effectively supporting precise and trustworthy disease diagnosis in real-world
agricultural scenarios.

4.2 Adversarial Robustness Evaluation and Performance Under Attack

This section empirically evaluates the behaviour of the proposed CNN-LSTM model under
adversarial conditions generated using a PGD-based attack. Model performance is assessed through
learning dynamics during adversarial training, test-time behaviour on adversarially perturbed
samples, and class-wise robustness metrics. The analysis focuses exclusively on measurable
outcomes derived from accuracy, loss, confusion matrices, and class-level performance indicators,
without introducing interpretive or causal explanations. This structured evaluation provides a
guantitative basis for subsequent discussion of robustness and model behaviour under adversarial
perturbations.
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4.2.1 Learning dynamics under adversarial training

Figure 10 illustrates the training and validation accuracy and loss trajectories of the CNN-LSTM
model under clean and PGD-based adversarial training over 20 epochs. As shown in Figure 10(a),
learning under adversarial inputs progresses more gradually than under clean conditions. Training
and validation accuracy for adversarial samples increase steadily across epochs, with lower initial
values and delayed convergence compared to clean data. In contrast, clean-data accuracy rises
sharply within the early epochs and stabilizes at higher levels. Despite the slower improvement under
adversarial training, both training and validation accuracy curves exhibit consistent upward trends
without abrupt drops or oscillatory behaviour.

The loss curves in Figure 10(b) further highlight the increased optimization difficulty introduced
by adversarial examples. Training and validation loss for adversarial data begin at higher magnitudes
and decrease more slowly than their clean-data counterparts. Nonetheless, loss reduction remains
monotonic overall, and validation loss closely tracks training loss throughout the training process.
Minor fluctuations observed in adversarial validation loss do not persist across epochs and do not
indicate divergence or instability.
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Fig. 10. Comparative learning trajectories of the CNN-LSTM model under clean and adversarial training

Across both accuracy and loss metrics, no evidence of training collapse, overfitting, or validation
instability is observed under adversarial training. The learning dynamics remain controlled and stable,
despite the increased complexity of optimizing on perturbed inputs.

4.2.2 Adversarial test performance and class-wise robustness

Figure 11 summarizes the performance of the CNN-LSTM model on the PGD-perturbed test set,
combining the confusion matrix (Figure 11a) with class-wise precision, recall, and F1-score metrics
(Figure 11b). Together, these results provide a detailed empirical characterization of model
behaviour under adversarial evaluation.

The confusion matrix in Figure 11(a) shows that correct predictions remain concentrated along
the main diagonal for all four classes, indicating preserved classification capability under adversarial
perturbations. Healthy Betel Vine samples achieve a correct classification rate of 91.51%, with the
majority of misclassifications directed toward the Rot Disease (stem) class (7.08%). Healthy Leaf
exhibits the highest diagonal dominance, with 95.00% of samples correctly classified, and limited
confusion primarily with Spot Disease (4.44%). For Rot Disease (stem), 90.95% of samples are
correctly identified, with a small proportion misclassified as Healthy Betel Vine (9.05%). Spot Disease
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maintains a correct classification rate of 91.30%, with minor confusion observed with Healthy Leaf
(7.83%).

The class-wise performance metrics presented in Figure 11(b) further quantify robustness under
adversarial conditions. Precision values range from 0.90 to 0.95 across all classes, indicating
consistent control over false positive predictions. Recall values remain high for all categories,
spanning 0.91 to 0.95, demonstrating stable detection of true class instances despite adversarial
perturbations. The resulting F1-scores fall within a narrow band between 0.91 and 0.93, reflecting
balanced performance between precision and recall for each class.

Healthy _Betel Vine 7.08% 1.42% -
’ 0.8
©w Healthy Leaf- 0.00% 0.6 0
% o M Precision
® 5 = Recall
] ) -04 0 m Fl-Score
™ Rot_Disease (stem) - 9.05% 0.4 1
-0.2
; 5 0.2 1
Spot_Disease - 0.87%
| | ' - 0.0
= i T & 0.0
'S' = % 3 Healthy Betel Vine Healthy_Leaf Rot_Disease (stem) Spot_Disease
© 2 = ‘g Classes
7} E=] 2 7]
o [ o 5]
| @ U a
> X v (2]
s a
© o
[ =]
T <

Predicted Labels
(a) (b)
Fig. 11. Comparative class-wise performance of the CNN-LSTM model under clean and PGD-adversarial test
conditions

Across both representations, no class exhibits disproportionate degradation or performance
collapse under adversarial evaluation. The alignment between confusion matrix structure and class-
wise metrics confirms that classification performance remains evenly distributed, with errors limited
to specific inter-class confusions rather than widespread misclassification. These results provide a
consistent empirical profile of the model’s behaviour under PGD-based adversarial testing and
establish a quantitative foundation for subsequent robustness comparison and discussion.

4.3 Robustness Analysis Summary and Alignment with Research Objectives

Table 2 provides a system-level summary of the proposed CNN-LSTM model’s robustness under
PGD-based adversarial evaluation. While no prior studies have applied adversarial robustness to
betel leaf disease classification, the clean-data performance reported here serves as a baseline. As
expected, the accuracy on adversarially perturbed data is lower than that on clean data, confirming
the vulnerability of conventional deep learning models to such perturbations and highlighting the
need for adversarial training. The model achieves an overall accuracy of 96.96% on clean test data,
performance decreases to 92.19% under an iterative PGD attack with perturbation budget € = 0.02,
resulting in an absolute degradation of 4.77 percentage points and an accuracy retention of 95.07%.
This measurable performance drop empirically confirms RQ1, demonstrating that deep learning
image classifiers are vulnerable to visually imperceptible adversarial perturbations when evaluated
under strong iterative attacks. At the same time, the limited degradation and high accuracy retention
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directly address RQ2, indicating that incorporating PGD-based adversarial samples during training
significantly improves model stability under adversarial conditions without compromising clean-data
performance. Consistent class-wise precision, recall, and Fl-score distributions further indicate that
robustness gains are not concentrated in specific classes but are evenly maintained across disease
categories. Overall, these results demonstrate that the proposed adversarially trained CNN-LSTM
model achieves a balanced trade-off between classification accuracy and robustness, supporting its
suitability for reliable agricultural disease diagnosis under moderate adversarial perturbations.

Table 2
Robustness Summary of CNN-LSTM under Clean and Adversarial Conditions
Metric Clean Test Data | PGD Adversarial Absolute Accuracy
Test Data Degradation (pp)
Overall Accuracy (%) 96.96 92.19 4.77
Accuracy Retention (%) | 100.00 95.08 -
Attack Type - PGD (Iterative) -
Perturbation Budget (€) | — 0.02 (€o° norm) -
Number of PGD Steps - 80 -
Evaluation Scope Full test set Full test set Consistent

Accuracy retention is defined as the ratio of adversarial accuracy to clean accuracy,
expressed as a percentage and it is computed relative to clean test accuracy.

Incorporating PGD-based adversarial training increases the computational requirements of the
CNN-LSTM model. Training time is longer due to the additional forward and backward passes for
adversarial samples, while inference latency per image remains comparable to the clean-trained
model. The saved model size increases from 3.5 MB for the clean-trained model to 10.3 MB for the
adversarially trained model, despite the architecture and parameter count remaining unchanged.
This increase reflects the storage of adversarial gradients and related training states rather than a
change in model complexity, indicating that the approach is feasible for deployment on devices with
moderate storage and computational resources.

5. Conclusion and Future Directions

This study examined the vulnerability of deep learning models for betel leaf disease classification
to adversarial perturbations and evaluated the effectiveness of adversarial training in improving
robustness. Models trained only on clean data suffer measurable performance degradation under
visually imperceptible PGD-based attacks, whereas incorporating PGD-generated adversarial samples
enables the CNN-LSTM architecture to maintain high clean-data accuracy while limiting degradation
under adversarial conditions. Consistent class-wise precision, recall, and Fl-scores indicate reliable
and balanced predictive behaviour across all disease categories.

While the CNN-LSTM model demonstrates strong performance on the curated betel leaf dataset,
its applicability is limited by dataset scale and single-crop focus. The adversarial training strategy is
optimized for PGD-style perturbations, which may not capture all real-world variations. Future work
should extend validation under diverse field conditions, including mobile-captured images, varying
lighting and backgrounds, different disease stages, and sensor noise, and explore larger, multi-crop
datasets. Additional robustness strategies and hybrid architectures, alongside explainable Al
techniques, may further improve efficiency, interpretability, and practical agricultural applicability.
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