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Available online 17 December 2025 diminishes the overall electrochemical performance by obstructing ion and

electron transport over the membrane electrode assembly region. A parallel flow
field was employed to study the impact of different cathode inlet/outlet widths
on the current density distribution in a PEMFC. Namely simulations A and B for the
inlet/outlet width of 8 millimeters and 28 millimeters on the cathode side. Results
showed that simulation B generated an even flow with a less drastic change in
velocity and an 8078 Pascal lower pressure drop than simulation B. This
significantly prevented partial flooding when having a larger inlet/outlet width,
enhancing the reactant 02 crossflow across the cathode active area interface.
Hence, simulation A attained a 24 % lower average current and power density than
simulation B. The improvement in PEMFC performance when using large

Keywords: inlet/outlet width highlights the significance of performance improvement
fuel cell; inlet width; computational considering the inlet/outlet dimension to obtain the optimum design for future
fluid dynamics; current density commercialisation.

1. Introduction

The increasing global energy demand has become increasingly concerning especially with the
environmental consequences. In order to sustain energy supply for long-term, a multi-pathway
strategy is progressively employed. Hydrogen power plays a pivotal role as one of the main energy
sources within the planned global energy mix. Following the growth of this industry, PEMFC have
been a pivotal alternative, especially for mobile and stationary systems. PEMFC's domination in
the fuel cell market, especially in the Asian region, can be attributed to its high power density and
relatively more straightforward mechanism, which only needs humidified hydrogen and oxygen
to produce power, water, and heat [1-4]. In the process of PEMFC maturity and commercialization,
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there are still several challenges to be tackled for long-term durability and cost that are
economically feasible. The PEMFC is constructed with a membrane electrode assembly (MEA)
consisting of a gas diffusion layer (GDL), catalyst layer (CL) and polymer electrolyte membrane
(PEM), all of which are sandwiched in between two bipolar plates equipped with flow fields.
Optimization of the bipolar plates and gas flow channels is essential to ensure efficient heat and
reactant transport throughout the MEA. This will then improve the MEA durability and PEMFC
reliability in the long run. Attaining maximum reactant and heat distribution while maintaining
efficient water management and optimum power loading remains a critical challenge in PEMFC
design. Multiple studies have shown that operating parameters such as the cathode reactant
flowrate can improve cell performance by reducing cell starvation region and improve water
management. Hassani et al. researched the impact of air flowrate towards the degradation rate
of a PEMFC [5]. It was found that higher air flow rate increased water removal which gradually
improved the PEMFC performance, allowing more active sites for oxygen reduction reaction. This
result aligns with studies from Chen et al.,, Yang et al. and Nguyen et al. [6-8]. Chen et al.
highlighted that as the gas starvation area reduced with increasing air flow rate, the cell power
output becomes more stable. Similarly, Yang et al. showed enhanced gas diffusion rate with higher
air flow rate. However, they stressed that a specific fuel cell design is limited to a certain flow rate.
Exceeding this flowrate will only cause fuel wastage as there will be insignificant improvement in
cell performance. Nguyen et al. also showed that the cathode reactant crossover through the PEM
increases with higher flow rate. This raises the concentration of oxygen diffusing through the
membrane towards the anode side. When operated in a multiple-cell stack, Gonzalez et al. showed
similar trend in performance increase with greater cathode flow rate especially at higher current
densities [9]. Like Yang et al., they highlighted that oversupply of cathode flow rate may cause
membrane dehydration with the increased water removal. Another way to enhance the reactant
transport in a PEMFC is by optimizing the inlet/outlet configurations. Changes to this parameter
may alter the pressure and velocity created by the moving fluid mass, which is the basis of the
two-phase fluid homogeneity required to prevent dehydration, flooding and performance loss.
Several works have proven the effect of having multiple inlet/outlets in a single flow field [10-13].
The drainage capability and pressure drop are easily manipulated depending on the location and
number of inlet/outlets. These changes result in a higher reactant concentration at the CL- GDL
interface due to the optimized humidity levels. For instance, Wang et al. proposed a combined
serpentine and interdigitated flow field, which had three inlets and one outlet [11]. A single
serpentine flow field with one inlet/outlet showed improved water drainage while reducing up to
87% of pressure drop, leading to a 13% higher peak power density. Zhang et al. investigated the
impact of having additional outlet in different locations within a parallel flow field [12]. The
additional outlet raised the oxygen concentration especially towards the outlet region. Water
saturation was significantly reduced when the additional outlet was placed in the middle of the
flow field. Nonetheless, these studies utilise the same inlet/outlet dimensions. The inlet/outlet
dimensions also affect the mass transport throughout the flow field and eventually towards the
MEA interfaces as well [14— 18]. Results generally showed that a smaller inlet/outlet or channel
dimensions promote higher forced convection on the reactant gases, as a smaller area promotes
higher fluid velocity. This increases the mass transfer rate and under-land cross flow, raising the
performance through a higher reaction rate. Smaller channels contribute to a higher pressure,
which could lessen the net power density. Liu et al. implemented micro-distributors of three
different widths in between the distribution zone and channel inlets of a parallel flow field [15].
As the width of the micro-distributor inlet decreases, higher fluid velocity is generated, thus
increasing water removal at the cathode GDL. Zhang et al. showed that smaller channel width
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increases the overall current density, but the cell reaches the concentration loss phase faster than
a wider channel width [16]. Considering the fluid entrance and exit within different channel
dimensions affect the mass transport, studies that consider the design of distribution zone within
a flow field may reveal a different outcome. This is because fluid must be dispersed from the
inlet/outlet towards the distribution zone before travelling through the flow channels; in contrast
to conventional channels with direct access from inlet/outlet to the flow channels. The emergence
of newer studies employing flow fields with distribution zones further emphasises the need to
investigate the effects of inlet/outlet dimensions especially for flow fields with a distribution zone
[19,20]. For example, Zhang et al. use a wider cathode inlet/outlet dimension than the anode side
to cater for the heavier density of oxygen reactant gas [19].

Hence, this paper aims to fill the research gap by conducting a computational fluid dynamics
(CFD) simulation for two single-stack PEMFCs with parallel flow fields. Both stacks differ only in
terms of the cathode inlet/outlet dimensions, while the anode inlet/outlet dimensions remain the
same. The performance of both stacks was compared through the fluid flow, mass transport and
electrochemical characteristics via graphical and numerical data. This research will aid in the
design engineering of flow field patterns for further optimisation of PEMFCs in future works. The
results will also provide insight into the correlation between fluid flow rate and fuel cell design
towards PEMFC performance.

2. Methods
2.1 Computational Domain

The three-dimensional (3-D) simulation study was conducted using the commercial software
ANSYS Fluent R2 2022. To highlight the impact of inlet/outlet dimensions, a well-researched design
like parallel flow field is used. The base model for the flow field was taken from a previous study
[21], which was inspired by several research from Zhang et al. [19,20]. In contrast to Zhang et al.,
this research considers the distribution zone as a reaction area together with the parallel channels.
Fig. 1 shows the computational domain of the single-cell PEMFC simulation models. Two
configuration models with different cathode inlet/outlet dimensions were employed. The inlet
width for the cathode flow field in simulation A is 8 millimeters, whereas in simulation B is 28
millimeters. For the anode side, a single inlet/outlet width of 8 millimeters is used for both
simulations. The total active area is 27 square centimeters with a channel and rib cross-sectional
area of 1 square millimeter. All anode and cathode flow fields are identical with 17 channels each.
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Fig. 1. Flow field used for simulation A and B of (a) cathode side, (b) anode side

The construction of model geometry is followed by defining the boundary conditions for each
model domain to prepare for the computational fluid dynamics (CFD) simulation. The model
parameters are defined in Table 1. The simulation model was solved using the Semi-Implicit
Method for Pressure-linked Linked Equations (SIMPLE) algorithm for velocity-pressure coupling
with convergence criteria of 10-6 for all residuals. The overall Fluent setup was carried out based
on the assumptions listed below:

. Two-phase flow model with laminar flow.

. Steady-state reaction.

. Gravity effect is neglected.

. All porous media are isotropic materials.
Table 1
Model Parameters
Parameter Value
Temperature (K) 343
Pressure (atm) 1
Operating Voltage (V) 0.6
Anode Stoichiometric Ratio 5
Cathode Stoichiometric Ratio 10
GDL Thickness (um) 35
CL Thickness (um) 1

PEM Thickness (um) 5
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2.2 Governing Equations

Based on the assumption above, the governing equations to model this simulation research
can be simplified according to the equations below:

Mass conservation equation:
V.(eptd) = S,y (1)
Where ¢ is porosity, p is the density, i is the fluid velocity and S,,, is the quality source term.

Momentum conservation equation:
1 . 1 . 2)
S—ZV. (pup) = —Vp + EV - (uvu) + S,

Where p is pressure and p is the fluid viscosity. S,, is the momentum source term which describes the

physical characteristics of a porous media. This source term is also related to permeability in the
equation:

Su = —,U.effez u/k (3)
Energy equation:

V- (pCpetl =V - (k¥IVT) + Sr) 4)
Where T, C, and Sr represents temperature, specific heat capacity and energy source term
respectively. Meanwhile, k¢/7 is the effective thermal conductivity which can be expressed further
in equation (5), noting that k/ and k* are the thermal conductivity of fluid and solid respectively.

kefT = ekf + (1 — &)k’ ()

2.2 Grid Independence Test & Model Validation

A grid independence test (GIT) ensures that the simulation run is independent of the mesh size
with maximum result accuracy. It is also critical to identify the optimum mesh size for time-
efficient simulation. The test was done using the design of simulation A at three different mesh
sizes, where the number of divisions was increased from 4, 6, and 8 at the channel, CL and PEM
layers. Fig. 2 shows that employing layer division of 6 is sufficient for the model to generate
minimal error of 0.35%. As for model validation, the result from simulation B is compared with
the reference study by Zhang et al which was operated at similar operating conditions and flow
field dimensions [20]. It was found that the current density at 0.65V differs by 5%, thus validating
the accuracy of the simulation model.
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Fig. 2. Current density generation with different element number for grid
independence test at 0.65V

3. Results

The simulated data were assessed through the simulation contours and numerical values taken
at the appropriate interfaces according to the parameter assessed. The effects of varying cathode
inlet dimensions and maintaining the anode inlet dimension at the same flow rate toward cell
performance were observed and discussed below.

Fig. 3 shows the velocity magnitude of simulations A and B in between the interface of the
channel and GDL. The fluid velocity range in Fig. 3(a) of the anode flow field in both simulations was
similar at below 0.5 meters per second, due to the same inlet/outlet area. In contrast, the difference
in fluid flow rate shown in Fig. 3(b) was drastically different for the cathode side, where simulation
A produced 86% higher peak fluid velocity than simulation B. There is a 50% decrease in cathode
fluid velocity from 38 meters per second to 19 meters per second for simulation A. As a result, the
cathode pressure drop reached 8773 pascal and 695 pascal for simulations A and B, respectively.
This can be easily justified through Bernoulli's principle, where a change in velocity has an inverse
effect on pressure [22]. Therefore, the higher velocity gradient acquired by simulation A generated
a more considerable pressure drop than simulation B. Kinetic energy increases because of the higher
fluid velocity, thus causing pressure to drop to balance the energy change for mass conservation.
Moreover, a streamline of high-velocity fluid was formed through the smaller inlet area and was
forced to disperse through the multiple-channel inlets. Instead of dispersing evenly, a dead- end area
was produced in the last channel due to the minimal presence of fluid flow. The impact of this
phenomenon can be discussed further by relating them with the reactant molar concentrations and
resulting electrochemical output.
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Fig. 3. Velocity distribution contour of simulation A and B at the channel-GDL layer (a) cathode side, (b)
anode side

Since both simulations' anode inlet/outlet had the same dimensions, the hydrogen reactant and
water product in Fig. 4 (a) and (b) had similar distribution patterns. The hydrogen consumption was
noticeably faster in simulation B compared to simulation A, resulting in more water concentration
in the channels of simulation B. Similar results were recorded at the cathode side in Fig. 5, whereby
simulation B showed greater oxygen consumption than simulation A in Fig. 5(a). The minimal
change in concentration gradient may indicate an oversupply of oxygen reactant at the cathode
side, particularly in simulation A. Since the oxygen concentration is lower in simulation B, the high
entrance velocity initiated by the smaller inlet width of simulation A could contribute to the
excessive reactant surplus. The slower fluid velocity in simulation B allowed more oxygen flow
control. Thus, the uniform fluid flow generated an even dispersion of oxygen reactant throughout
the flow field. Meanwhile, partial flooding occurred in the last channel of simulation A, which is the
same dead-end region seen in Fig. 5(b). The accumulation of excess water is detrimental to the
performance of PEMFC as the water molecules may reduce the MEA layers' porosity, decreasing
the permeability of reactants. The reduction in the available active surface area for reactant
dissociation at the CL diminishes the overall cell performance due to concentration loss [23-25].
This is proven through the lower current density distribution recorded by simulation A in
comparison to simulation B as seen in Fig. 6. This occurrence proves the impact of exceeding flow
rate limitation for a specific PEMFC design [5-9]. The nature of design A may require a lower air
stoichiometric ratio for optimised performance. The resulting power density at 0.6 volts came
around to 0.34 watts per square centimeter and 0.44 watts per square centimeter for simulations
A and B respectively. Moreover, the high-pressure drop generated by simulation A contributes to
parasitic power, further reducing the net power output.
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Fig. 4. Molar concentration at the channel-GDL interface for anode of simulation A and B (a) Hydrogen,
(b) Water
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interface

The industrial operation of PEMFC often calls for multiple cell stacks to achieve higher power
generation. The mass transport of reactants is much more complicated due to the more significant
number of layers that reactants must diffuse. Thus, the effect of partial flooding and lower current
density generated by simulation A may be more apparent when constructed in a stack [26].
Therefore, the simulation results showed that employing an optimal flow field design is crucial as
it can manipulate the fluid flow characteristics. It also proved the importance of considering the
inlet/outlet dimension when designing a flow field, especially when used with higher flow rate.
Uneven and uncontrolled fluid flow may trigger adverse effects such as flooding or dehydration
that can diminish the electrochemical properties of the MEA layers.

4. Conclusion

This paper investigated the performance of two single-cell PEMFC with different inlet widths
under the same operating conditions. Results show that although the anode side of simulations A
and B had similar fluid velocity ranges, the resulting pressure difference generated varying hydrogen
and water concentrations at the channel-GDL interface. Hydrogen reactant was consumed faster in
simulation B than in simulation A, which naturally caused the excess water vapor to fill the consumed
spaces downwards the channel. Water condensation can be mitigated by increasing the hydrogen
supply rate to raise its dispersion area throughout the anode flow field. Meanwhile, simulation A on
the cathode side exhibited poorer fluid flow homogeneity compared to simulation B, which formed
partial flooding at the last channel. The higher water concentration in Simulation A ultimately led to
a 24 percent lower average current and power density than in simulation B. The high-pressure drop
generated by simulation A will also reduce the net power output, further reducing cell efficiency. In
conclusion, the study showed the importance of considering the inlet/outlet conditions to acquire an
optimum flow field simulation to maximize the active contact surface area and mass transport
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efficiency. Its effect will be much more evident in multiple-stacked PEMFCs, which will be an exciting
research prospect on the impact of inlet/outlet dimensions.
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